NKMAXBIO We support you, we believe in your research

Recombinant human ADAT2 protein

Catalog Number: ATGP0709

PRODUCT INFORMATION

Expression system

E.coli

Domain

1-191aa

UniProt No.

07Z6V5

NCBI Accession No.

NP 872309

Alternative Names

tRNA-specific adenosine deaminase 2, DEADC1, TAD2

PRODUCT SPECIFICATION

Molecular Weight

23.2 kDa (211aa) confirmed by MALDI-TOF

Concentration

0.5mg/ml (determined by Bradford assay)

Formulation

Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 10% glycerol, 2mM DTT, 50mM NaCl

Purity

> 90% by SDS-PAGE

Tag

His-Tag

Application

SDS-PAGE

Storage Condition

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

BACKGROUND

Description

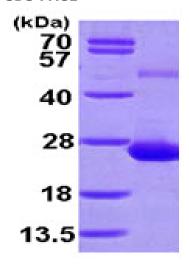
Adenosine deaminase (ADA), also known as ADAT2 is an enzyme involved in purine metabolism. It is needed for the breakdown of adenosine from food and for the turnover of nucleic acids in tissues. Also, ADAT2 is thought to participate in the deamination of adenosine-34 to inosine in many tRNAs. Belonging to the cytidine and deoxycytidylate deaminase protein family, ADAT2 employs zinc as a cofactor. ADAT2 is a 191 amino acid protein that exists as two isoforms produced by alternative splicing events. Recombinant human ADAT2 protein, fused to His-tag at N-terminus, was expressed in E. coli and purified by using conventional chromatography techniques.

NKMAXBio We support you, we believe in your research

Recombinant human ADAT2 protein

Catalog Number: ATGP0709

Amino acid Sequence


MGSSHHHHHH SSGLVPRGSH MEAKAAPKPA ASGACSVSAE ETEKWMEEAM HMAKEALENT EVPVGCLMVY NNEVVGKGRN EVNQTKNATR HAEMVAIDQV LDWCRQSGKS PSEVFEHTVL YVTVEPCIMC AAALRLMKIP LVVYGCQNER FGGCGSVLNI ASADLPNTGR PFQCIPGYRA EEAVEMLKTF YKQENPNAPK SKVRKKECQK S

General References

Persico AM, et al. (2000) Am. J. Med. Genet. 96 (6): 784-90. Kimura, K., et al. (2006) Genome Res. 16: 55-65.

DATA

SDS-PAGE

15% SDS-PAGE (3ug)

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain.

