NKMAXBio We support you, we believe in your research

Recombinant human Siglec-7/CD328 protein

Catalog Number: ATGP3637

PRODUCT INFORMATION

Expression system

Baculovirus

Domain

19-353aa

UniProt No.

09Y286

NCBI Accession No.

NP 055200

Alternative Names

Sialic acid-binding Ig-like lectin 7 isoform 1, SIGLEC7, AIRM1, CD328, CDw328, D-siglec, p75, p75/AIRM1, QA79, SIGLEC-7, SIGLEC19P, SIGLECP2

PRODUCT SPECIFICATION

Molecular Weight

64.2 kDa (577aa)

Concentration

0.5mg/ml (determined by absorbance at 280nm)

Formulation

Liquid in. Phosphate-Buffered Saline (pH 7.4) containing 10% glycerol

Purity

> 90% by SDS-PAGE

Endotoxin level

< 1 EU per 1ug of protein (determined by LAL method)

Tag

hlgG-His-Tag

Application

SDS-PAGE

Storage Condition

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

BACKGROUND

Description

SIGLEC7, also known as sialic acid-binding Ig-like lectin 7 isoform 1, is a recently discovered family of sialic acid-binding lectins of the immunoglobulin (Ig) superfamily. The extracellular portion has two Ig-like domains, with the amino-terminal V-set Ig domain including amino acid residues known to be involved in sialic acid recognition

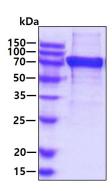
NKMAXBio We support you, we believe in your research

Recombinant human Siglec-7/CD328 protein

Catalog Number: ATGP3637

by other Siglecs. The combination of an extracellular sialic acid binding site and an intracellular ITIM motif suggests that this molecule is involved in trans-membrane regulatory signaling reactions. It exists as a monomer on the cell surface and is expressed on natural killer cells. Recombinant human SIGLEC7, fused to hIgG-His-tag at C-terminus, was expressed in insect cell and purified by using conventional chromatography techniques.

Amino acid Sequence


<ADP>QKSNRKD YSLTMQSSVT VQEGMCVHVR CSFSYPVDSQ TDSDPVHGYW FRAGNDISWK APVATNNPAW AVQEETRDRF HLLGDPQTKN CTLSIRDARM SDAGRYFFRM EKGNIKWNYK YDQLSVNVTA LTHRPNILIP GTLESGCFQN LTCSVPWACE QGTPPMISWM GTSVSPLHPS TTRSSVLTLI PQPQHHGTSL TCQVTLPGAG VTTNRTIQLN VSYPPQNLTV TVFQGEGTAS TALGNSSSLS VLEGQSLRLV CAVDSNPPAR LSWTWRSLTL YPSQPSNPLV LELQVHLGDE GEFTCRAQNS LGSQHVSLNL SLQQEYTGKM RPVSGVLL
LE PKSCDKTHTC PPCPAPELLG GPSVFLFPPK PKDTLMISRT PEVTCVVVDV SHEDPEVKFN WYVDGVEVHN AKTKPREEQY NSTYRVVSVL TVLHQDWLNG KEYKCKVSNK ALPAPIEKTI SKAKGQPREP QVYTLPPSRD ELTKNQVSLT CLVKGFYPSD IAVEWESNGQ PENNYKTTPP VLDSDGSFFL YSKLTVDKSR WQQGNVFSCS VMHEALHNHY TQKSLSLSPG KHHHHHH>

General References

Crocker., et al. (2001) Trends Immunol. 22:337-342. Nicoll G., et al. (1999) J. Biol. Chem. 274:34089-34095.

DATA

SDS-PAGE

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain.

