NKMAXBIO We support you, we believe in your research

Recombinant E.coli SlyD protein

Catalog Number: SLD0801

PRODUCT INFORMATION

Expression system

E.coli

Domain

1-196aa

UniProt No.

P0A9K9

NCBI Accession No.

NP 755987

Alternative Names

FKBP-type peptidyl-prolyl cis-trans isomerase, FKBP-type peptidyl-prolyl cis-trans isomerase, SlyD, FKBP-type peptidyl-prolyl cis-trans isomerase FKBP type peptidyl prolyl cis trans isomerase slyD, Histidine rich protein, PPlase, Rotamase, WHP.

PRODUCT SPECIFICATION

Molecular Weight

21 kDa (196aa) confirmed by MALDI-TOF

Concentration

1mg/ml (determined by Bradford assay)

Formulation

Liquid in. 20mM Tris-HCl buffer (pH 7.5)

Purity

> 95% by SDS-PAGE

Biological Activity

Specific activity is > 700nmol/min/mg, and is defined as the amount of enzyme cleaves 1nmol of suc-AAPF-pNA per minute at 37C in Tris-HCl pH 8.0 using chymotrypsin.

Tag

Non-Tagged

Application

SDS-PAGE, Enzyme Activity

Storage Condition

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

BACKGROUND

Description

SlyD is a putative folding helper protein from the Escherichia coli cytosol, which consists of an N-terminal prolyl

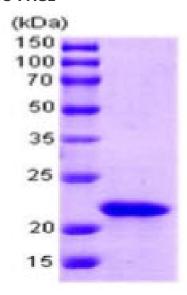
NKMAXBio We support you, we believe in your research

Recombinant E.coli SlyD protein

Catalog Number: SLD0801

isomerase domain of the FKBP type and a presumably unstructured C-terminal tail. It is involved in the biosynthesis of the metal cluster in the [NiFe]-hydrogenase enzymes, and exhibits several activities including that of a peptidyl-prolyl isomerase. Recombinant E. Coli slyD was expressed in E. coli and purified by conventional chromatography.

Amino acid Sequence


MKVAKDLVVS LAYQVRTEDG VLVDESPVSA PLDYLHGHGS LISGLETALE GHEVGDKFDV AVGANDAYGQ YDENLVQRVP KDVFMGVDEL QVGMRFLAET DQGPVPVEIT AVEDDHVVVD GNHMLAGQNL KFNVEVVAIR EATEEELAHG HVHGAHDHHH DHDHDGCCGG HGHDHGHEHG GEGCCGGKGN GGCGCH

General References

Zhang JW., et al. (2007) J Bacteriol. 189(21):7942-4. Scholz C., et al. (2006) Biochemistry. 45(1):20-33.

DATA

SDS-PAGE

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain.

15% SDS-PAGE (3ug)