NKMAXBIO We support you, we believe in your research

Recombinant human LIN-28A protein

Catalog Number: ATGP0412

PRODUCT INFORMATION

Expression system

E.coli

Domain

42-209aa

UniProt No.

09H9Z2

NCBI Accession No.

NP 078950

Alternative Names

Zinc finger CCHC domain-containing protein 1, ZCCHC1, Tex17, RNA binding protein lin 28, LIN28A, LIN-28, Lin 28 homolog A, Lin 28 homolog, FLJ12457, CSDD1,

PRODUCT SPECIFICATION

Molecular Weight

21.1 kDa (191aa) confirmed by MALDI-TOF

Concentration

0.5mg/ml (determined by Bradford assay)

Formulation

Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 10% glycerol, 0.1M NaCl, 0.1mM PMSF

Purity

> 85% by SDS-PAGE

Tag

His-Tag

Application

SDS-PAGE

Storage Condition

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

BACKGROUND

Description

Lin-28 acts as a 'translational enhancer', driving specific mRNAs to polysomes and thus increasing the efficiency of protein synthesis. It is marker of undifferentiated human embryonic stem cells and has been used to enhance the efficiency of the formation of induced pluripotent stem (iPS) cells from human fibroblasts. It has also been shown to bind to the let-7 pre-miRNA and block production of the mature let-7 microRNA in mouse embryonic stem cells. Recombinant Lin28 protein was expressed in E. coli and purified by using conventional

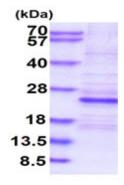
NKMAXBio We support you, we believe in your research

Recombinant human LIN-28A protein

Catalog Number: ATGP0412

chromatography techniques.

Amino acid Sequence


MGSSHHHHHH SSGLVPRGSH RSMGICKWFN VRMGFGFLSM TARAGVALDP PVDVFVHQSK LHMEGFRSLK EGEAVEFTFK KSAKGLESIR VTGPGGVFCI GSERRPKGKS MQKRRSKGDR CYNCGGLDHH AKECKLPPQP KKCHFCQSIS HMVASCPLKA QQGPSAQGKP TYFREEEEEI HSPTLLPEAQ N

General References

Moss E.G., et al. (2003) Dev. Biol. 258:432-442 Heo I., et al. (2009) Cell. 138:696-708.

DATA

SDS-PAGE

15% SDS-PAGE (3ug)

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain.

