NKMAXBIO We support you, we believe in your research

Recombinant human CDC25A protein

Catalog Number: ATGP0945

PRODUCT INFORMATION

Expression system

E.coli

Domain

1-524aa

UniProt No.

P30304

NCBI Accession No.

NP 001780

Alternative Names

M-phase inducer phosphatase 1, Dual specificity phosphatase Cdc25A, Cdc 25a, Cell division cycle 25 homolog A (S. pombe), Cell division cycle 25A, Cell division cycle 25A isoform a, Cell division cycle 25A isoform b, D9Ertd393e, EC 3.1.3.48, M phase inducer phosphatase 1, MGC115549

PRODUCT SPECIFICATION

Molecular Weight

63.2 kDa (560aa)

Concentration

0.25mg/ml (determined by Bradford assay)

Formulation

Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 5mM DTT, 20% glycerol, 0.2M NaCl, 1mM EDTA

Purity

> 80% by SDS-PAGE

Tag

His-Tag

Application

SDS-PAGE

Storage Condition

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

BACKGROUND

Description

M-phase inducer phosphatase 1, also known as CDC25A, is a member of the CDC25 family of phosphatases. CDC25A is required for progression from G1 to the S phase of the cell cycle. It activates the cyclin-dependent kinase CDC2 by removing two phosphate groups. CDC25A is specifically degraded in response to DNA damage, which prevents cells with chromosomal abnormalities from progressing through cell division. CDC25A is an

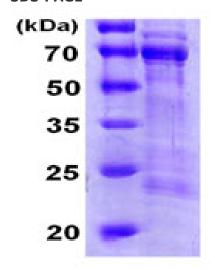
NKMAXBio we support you, we believe in your research

Recombinant human CDC25A protein

Catalog Number: ATGP0945

oncogene, although its exact role in oncogenesis has not been demonstrated. Recombinant human CDC25A protein, fused to His-tag at N-terminus, was expressed in E. coli and purified by using conventional chromatography techniques.

Amino acid Sequence


MRGSHHHHHH GMASMTGGQQ MGRDLYDDDD KDRWGSMELG PEPPHRRRLL FACSPPPASQ PVVKALFGAS
AAGGLSPVTN LTVTMDQLQG LGSDYEQPLE VKNNSNLQRM GSSESTDSGF CLDSPGPLDS KENLENPMRR IHSLPQKLLG
CSPALKRSHS DSLDHDIFQL IDPDENKENE AFEFKKPVRP VSRGCLHSHG LQEGKDLFTQ RQNSAPARML SSNERDSSEP
GNFIPLFTPQ SPVTATLSDE DDGFVDLLDG ENLKNEEETP SCMASLWTAP LVMRTTNLDN RCKLFDSPSL CSSSTRSVLK
RPERSQEESP PGSTKRRKSM SGASPKESTN PEKAHETLHQ SLSLASSPKG TIENILDNDP RDLIGDFSKG YLFHTVAGKH
QDLKYISPEI MASVLNGKFA NLIKEFVIID CRYPYEYEGG HIKGAVNLHM EEEVEDFLLK KPIVPTDGKR VIVVFHCEFS
SERGPRMCRY VRERDRLGNE YPKLHYPELY VLKGGYKEFF MKCQSYCEPP SYRPMHHEDF KEDLKKFRTK SRTWAGEKSK
REMYSRLKKL

General References

Pereg Y., et al. (2010) Nat. Cell Biol. 12:400-406 Soerensen C.S., et al. (2003) Cancer Cell 3:247-258

DATA

SDS-PAGE

15% SDS-PAGE (3ug)

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain.

