NKMAXBIO We support you, we believe in your research

Recombinant human PIN4 protein

Catalog Number: ATGP0998

PRODUCT INFORMATION

Expression system

E.coli

Domain

1-156aa

UniProt No.

O9Y237

NCBI Accession No.

AAH93700

Alternative Names

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 4 isofom 2, Parvulin-14, Parvulin-17, PPlase Pin4, hEPVH, PAR14, PAR17

PRODUCT SPECIFICATION

Molecular Weight

18.8 kDa (176aa) confirmed by MALDI-TOF

Concentration

1mg/ml (determined by Bradford assay)

Formulation

Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 10% glycerol, 1mM DTT, 0.1mM PMSF

Purity

> 90% by SDS-PAGE

Biological Activity

Specific activity is > 700nmol/min/mg, and is defined as the amount of enzyme that cleaves 1nmole of suc-AAPF-pNA per minute at 37C in Tris-HCl pH 8.0 using chymotrypsin.

Tag

His-Tag

Application

SDS-PAGE, Enzyme Activity

Storage Condition

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

BACKGROUND

Description

PIN4, also known as Peptidyl-prolyl cis-trans isomerase NIMA-interacting 4, is peptidyl-prolyl cis/trans isomerase (PPlase) that interacts with NIMA and is essential for cell cycle regulation. There are two different isoforms which

NKMAXBio We support you, we believe in your research

Recombinant human PIN4 protein

Catalog Number: ATGP0998

are PAR14 and PAR17. PIN4/PAR17 was imported into mitochondria in a time and membrane potential-dependent manner, where it reached the mitochondrial matrix. Moreover, Pin4 protein was shown to bind to double-stranded DNA under physiological salt conditions. Recombinant human PIN4 protein, fused to His-tag at N-terminus, was expressed in E. coli and purified by using conventional chromatography.

Amino acid Sequence

MGSSHHHHHH SSGLVPRGSH MPMAGLLKGL VRQLEQFRVQ QQASKMPPKG KSGSGKAGKG GAASGSDSAD KKAQGPKGGG NAVKVRHILC EKHGKIMEAM EKLKSGMRFN EVAAQYSEDK ARQGGDLGWM TRGSMVGPFQ EAAFALPVSG MDKPVFTDPP VKTKFGYHII MVEGRK

General References

uchida T., et al. (1999) FEBS Lett. 446:278-282 Fujiyama-Nakamura S., et al. (2009) Mol. Cell. Proteomics. 8:1552-1565

DATA

SDS-PAGE

15% SDS-PAGE (3ug)

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain.

