NKMAXBIO We support you, we believe in your research

Recombinant human GATM protein

Catalog Number: ATGP1438

PRODUCT INFORMATION

Expression system

E.coli

Domain

38-423aa

UniProt No.

P50440

NCBI Accession No.

NP 001473

Alternative Names

glycine amidinotransferase mitochondrial, glycine amidinotransferase, mitochondrial, AGAT, AT

PRODUCT SPECIFICATION

Molecular Weight

46.9 kDa (410aa) confirmed by MALDI-TOF (Molecular weight on SDS-PAGE will appear higher)

Concentration

1mg/ml (determined by Bradford assay)

Formulation

Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 2mM DTT, 10% glycerol, 200mM NaCl

Purity

> 90% by SDS-PAGE

Tag

His-Tag

Application

SDS-PAGE

Storage Condition

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

BACKGROUND

Description

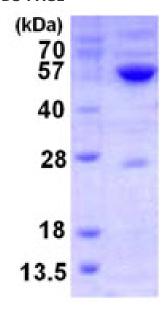
GATM (Glycine amidinotransferase, mitochondrial) is a mitochondrial enzyme that belongs to the amidinotransferase family. This enzyme is involved in creatine biosynthesis, whereby it catalyzes the transfer of a guanido group from L-arginine to glycine, resulting in guanidinoacetic acid, the immediate precursor of creatine. Creatine plays a vital role in energy metabolism in muscle tissues. It plays a role in embryonic and central nervous system development. Recombinant human GATM protein, fused to His-tag at N-terminus, was expressed in E. coli and purified by using conventional chromatography techniques.

NKMAXBio We support you, we believe in your research

Recombinant human GATM protein

Catalog Number: ATGP1438

Amino acid Sequence


MGSSHHHHHH SSGLVPRGSH MGSMSTQAAT ASSRNSCAAD DKATEPLPKD CPVSSYNEWD PLEEVIVGRA ENACVPPFTI EVKANTYEKY WPFYQKQGGH YFPKDHLKKA VAEIEEMCNI LKTEGVTVRR PDPIDWSLKY KTPDFESTGL YSAMPRDILI VVGNEIIEAP MAWRSRFFEY RAYRSIIKDY FHRGAKWTTA PKPTMADELY NQDYPIHSVE DRHKLAAQGK FVTTEFEPCF DAADFIRAGR DIFAQRSQVT NYLGIEWMRR HLAPDYRVHI ISFKDPNPMH IDATFNIIGP GIVLSNPDRP CHQIDLFKKA GWTIITPPTP IIPDDHPLWM SSKWLSMNVL MLDEKRVMVD ANEVPIQKMF EKLGITTIKV NIRNANSLGG GFHCWTCDVR RRGTLQSYLD

General References

Schulze A (2003). Mol. Cell. Biochem. 244 (1-2): 143-50. Cullen M.E., Et al. (2006) Circulation 114:I16-I20

DATA

SDS-PAGE

15% SDS-PAGE (3ug)

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain.

