NKMAXBIO We support you, we believe in your research

Recombinant e.coli mutM protein

Catalog Number: ATGP1448

PRODUCT INFORMATION

Expression system

E.coli

Domain

1-269aa

UniProt No.

P05523

NCBI Accession No.

NP 418092

Alternative Names

Formamidopyrimidine-DNA glycosylase, fpg

PRODUCT SPECIFICATION

Molecular Weight

32.4 kDa (289aa) confirmed by MALDI-TOF

Concentration

0.5mg/ml (determined by Bradford assay)

Formulation

Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 20% glycerol 0.1M NaCl,1mM DTT

Purity

> 90% by SDS-PAGE

Tag

His-Tag

Application

SDS-PAGE

Storage Condition

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

BACKGROUND

Description

mutM, also known as formamidopyrimidine DNA glycosylase, is a base excision repair enzyme which recognizes and removes a wide range of oxidized purines from correspondingly damaged DNA. This protein is nonredundant and required to rapidly remove its substrate lesions on the chromosome. In addition, it also repaired a significant portion of the lesions recognized by Endo III, suggesting that it plays a prominent role in the global repair of both purine damage and pyrimidine damage in vivo. Recombinant E. coli mutM protein, fused to His-tag at N-terminus, was expressed in E. coli and purified by using conventional chromatography techniques.

NKMAXBio We support you, we believe in your research

Recombinant e.coli mutM protein

Catalog Number: ATGP1448

Amino acid Sequence

<MGSSHHHHHH SSGLVPRGSH> MPELPEVETS RRGIEPHLVG ATILHAVVRN GRLRWPVSEE IYRLSDQPVL SVQRRAKYLL LELPEGWIII HLGMSGSLRI LPEELPPEKH DHVDLVMSNG KVLRYTDPRR FGAWLWTKEL EGHNVLTHLG PEPLSDDFNG EYLHQKCAKK KTAIKPWLMD NKLVVGVGNI YASESLFAAG IHPDRLASSL SLAECELLAR VIKAVLLRSI EQGGTTLKDF LQSDGKPGYF AQELQVYGRK GEPCRVCGTP IVATKHAQRA TFYCRQCQK

General References

Serre L. et al. (2002) EMBO J. 21:2854-2865 Schalow BJ. et al. (2011) J Mol Biol, 410:183-193

DATA

SDS-PAGE

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain.

