PRODUCT INFORMATION

Expression system E.coli

Domain 40-419aa

UniProt No. P17540

NCBI Accession No. NP_001093205

Alternative Names Creatine kinase S-type mitochondrial, Creatine kinase S-type, mitochondrial, SMTCK

PRODUCT SPECIFICATION

Molecular Weight 46.1 kDa (405aa) confirmed by MALDI-TOF

Concentration 1mg/ml (determined by Bradford assay)

Formulation Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 10% glycerol, 1mM DTT, 100mM NaCl

Purity > 90% by SDS-PAGE

Tag His-Tag

Application SDS-PAGE

Storage Condition

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

BACKGROUND

Description

CKMT2, as known as SMTCK, belongs to the ATP:guanido phosphotransferase family. SMTCK is responsible for the transfer of high energy phosphate from mitochondria to the cytosolic carrier, creatine. This enzyme is reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e. g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. Recombinant human CKMT2 protein, fused to His-tag at N-terminus, was expressed in E. coli and purified by using conventional chromatography techniques.

Amino acid Sequence

<MGSSHHHHHH SSGLVPRGSH MGSHM>EVREQ PRLFPPSADY PDLRKHNNCM AECLTPAIYA KLRNKVTPNG YTLDQCIQTG VDNPGHPFIK TVGMVAGDEE SYEVFADLFD PVIKLRHNGY DPRVMKHTTD LDASKITQGQ FDEHYVLSSR VRTGRSIRGL SLPPACTRAE RREVENVAIT ALEGLKGDLA GRYYKLSEMT EQDQQRLIDD HFLFDKPVSP LLTCAGMARD WPDARGIWHN YDKTFLIWIN EEDHTRVISM EKGGNMKRVF ERFCRGLKEV ERLIQERGWE FMWNERLGYI LTCPSNLGTG LRAGVHVRIP KLSKDPRFSK ILENLRLQKR GTGGVDTAAV ADVYDISNID RIGRSEVELV QIVIDGVNYL VDCEKKLERG QDIKVPPPLP QFGKK

General References

Payne RM, et al. (1995) Mol. Cell. Biochem. 133-134: 235-43. Qin W, Khuchua Z, et al. (1998) Mol. Cell. Biochem. 184 (1-2): 153-67.

DATA

SDS-PAGE

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain.