NKMAXBIO We support you, we believe in your research

Recombinant human H2AFZ protein

Catalog Number: ATGP2612

PRODUCT INFORMATION

Expression system

E.coli

Domain

1-128aa

UniProt No.

P0C0S5

NCBI Accession No.

NP 002097

Alternative Names

Histone H2A.Z, H2A.z, H2A/z, H2AZ

PRODUCT SPECIFICATION

Molecular Weight

15.9 kDa (151aa)

Concentration

0.25mg/ml (determined by Bradford assay)

Formulation

Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 0.4M urea, 10% glycerol

Purity

> 85% by SDS-PAGE

Tag

His-Tag

Application

SDS-PAGE, Denatured

Storage Condition

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

BACKGROUND

Description

Histone H2A. Z, also known as H2AFZ, is a member of the histone H2A family. Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Nucleosomes consist of approximately 146 bp of DNA wrapped around a histone octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). H2AFZ may be involved in the formation of constitutive heterochromatin and may be required for chromosome segregation during cell division. Also, H2AFZ is a variant Histone H2A which replaces conventional H2A in a subset of nucleosomes. Recombinant human H2AFZ protein,

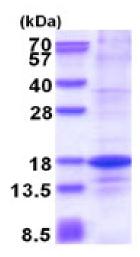
NKMAXBio We support you, we believe in your research

Recombinant human H2AFZ protein

Catalog Number: ATGP2612

fused to His-tag at N-terminus, was expressed in E. coli.

Amino acid Sequence


MGSSHHHHHH SSGLVPRGSH MGSMAGGKAG KDSGKAKTKA VSRSQRAGLQ FPVGRIHRHL KSRTTSHGRV GATAAVYSAA ILEYLTAEVL ELAGNASKDL KVKRITPRHL QLAIRGDEEL DSLIKATIAG GGVIPHIHKS LIGKKGQQKT V

General References

Rupp R A., et al. (2005) Cell. 123: 1178-1179. Martin C., et al. (2005) Mol Cell Biol. 6:838-849.

DATA

SDS-PAGE

15% SDS-PAGE (3ug)

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain.

