NKMAXBIO We support you, we believe in your research

Recombinant human DDX39A protein

Catalog Number: ATGP2719

PRODUCT INFORMATION

Expression system

E.coli

Domain

1-249aa

UniProt No.

000148

NCBI Accession No.

NP 005795

Alternative Names

ATP-dependent RNA helicase DDX39A, DEAD (Asp-Glu-Ala-Asp) box polypeptide 39A, BAT1, BAT1L, DDX39, DDXL, uRH49

PRODUCT SPECIFICATION

Molecular Weight

31.0 kDa (274aa)

Concentration

1mg/ml (determined by Bradford assay)

Formulation

Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 10% glycerol, 0.4M urea

Purity

> 80% by SDS-PAGE

Tag

His-Tag

Application

SDS-PAGE, Denatured

Storage Condition

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

BACKGROUND

Description

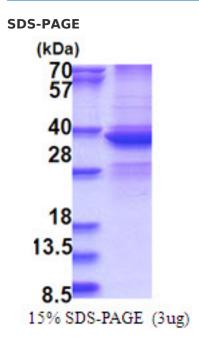
DDX39A is a member of the DEAD box protein family. This protein is characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD) and are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA secondary structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Based on their distribution patterns, some members of the DEAD box protein family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division.

NKMAXBio We support you, we believe in your research

Recombinant human DDX39A protein

Catalog Number: ATGP2719

Alternatively spliced transcript variants encoding different isoforms have been found. Recombinant human DDX39A protein, fused to His-tag at N-terminus, was expressed in E. coli


Amino acid Sequence

MGSSHHHHHH SSGLVPRGSH MGSEFMAEQD VENDLLDYDE EEEPQAPQES TPAPPKKDIK GSYVSIHSSG FRDFLLKPEL LRAIVDCGFE HPSEVQHECI PQAILGMDVL CQAKSGMGKT AVFVLATLQQ IEPVNGQVTV LVMCHTRELA FQISKEYERF SKYMPSVKVS VFFGGLSIKK DEEVLKKNCP HVVVGTPGRI LALVRNRSFS LKNVKHFVLD ECDKMLEQLD MRRDVQEIFR LTPHEKOCMM FSATLSKDIR PVCRKFMODP MEVF

General References

Pryor A., Tung L. et al. (2004). Nucleic Acids Res. 32:1857-1865

DATA

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain.

