NKMAXBIO We support you, we believe in your research

Recombinant human PPM1D protein

Catalog Number: ATGP2992

PRODUCT INFORMATION

Expression system

E.coli

Domain

98-375aa

UniProt No.

O8NEA7

NCBI Accession No.

AAH33893

Alternative Names

Protein phosphatase 1D magnesium-dependent delta isoform, Protein phosphatase 1D magnesium-dependent, delta isoform, PP2C-DELTA, WIP1

PRODUCT SPECIFICATION

Molecular Weight

33.2 kDa (299aa)

Concentration

0.5mg/ml (determined by Bradford assay)

Formulation

Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 10% glycerol

Purity

> 85% by SDS-PAGE

Tag

His-Tag

Application

SDS-PAGE, Denatured

Storage Condition

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

BACKGROUND

Description

PPM1D also known as Protein phosphatase 1D magnesium-dependent, delta isoform. This protein is a member of the PP2C family of Ser/Thr protein phosphatases. PP2C family members are known to be negative regulators of cell stress response pathways. The expression of this gene is induced in a p53-dependent manner in response to various environmental stresses. While being induced by tumor suppressor protein TP53/p53, this phosphatase negatively regulates the activity of p38 MAP kinase (MAPK/p38) through which it reduces the phosphorylation of

NKMAXBio We support you, we believe in your research

Recombinant human PPM1D protein

Catalog Number: ATGP2992

p53, and in turn suppresses p53-mediated transcription and apoptosis. This phosphatase thus mediates a feedback regulation of p38-p53 signaling that contributes to growth inhibition and the suppression of stress induced apoptosis. Recombinant human PPM1D, fused to His-tag at N-terminus, was expressed in E. coli.

Amino acid Sequence

<MGSSHHHHHH SSGLVPRGSH M>VAFFAVCDG HGGREAAQFA REHFWGFIKK QKGFTSSEPA KVCAAIRKGF LACHLAMWKK LAEWPKTMTG LPSTSGTTAS VVIIRGMKMY VAHVGDSGVV LGIQDDPKDD FVRAVEVTQD HKPELPKERE RIEGLGGSVM NKSGVNRVVW KRPRLTHNGP VRRSTVIDQI PFLAVARALG DLWSYDFFSG EFVVSPEPDT SVHTLDPQKH KYIILGSDGL WNMIPPQDAI SMCQDQEEKK YLMGEHGQSC AKMLVNRALG RWRQRMLRAD NTSAIVICI

General References

Fiscella M., et al. (1997) Proc Natl Acad Sci u S A, 94 (12): 6048-53.

DATA

SDS-PAGE

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain.

