# NKMAXBio We support you, we believe in your research

## Recombinant e.coli gldA protein

Catalog Number: ATGP3130

#### PRODUCT INFORMATION

## **Expression system**

E.coli

#### **Domain**

1-367aa

#### UniProt No.

P0A9S5

#### **NCBI Accession No.**

NP 418380

#### **Alternative Names**

Glycerol dehydrogenase, ECK3937, JW5556

### PRODUCT SPECIFICATION

#### **Molecular Weight**

41.1 kDa (390aa) confirmed by MALDI-TOF

#### Concentration

1mg/ml (determined by Bradford assay)

#### **Formulation**

Liquid in. Phosphate-Buffered Saline (pH 7.4) 10% glycerol

### **Purity**

> 95% by SDS-PAGE

#### **Biological Activity**

Specific activity: > 14 Units/ml One unit will oxidize 1.0 umole of glycerol to dihydroxyacetone per minute at pH 8.0 at 25C

## Tag

His-Tag

### **Application**

Enzyme Activity, SDS-PAGE

## **Storage Condition**

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

## **BACKGROUND**

## **Description**

gldA catalyzes the NAD-dependent oxidation of glycerol to dihydroxyacetone (glycerone). This protein allows microorganisms to utilize glycerol as a source of carbon under anaerobic conditions. In E. coli, an important role of GldA is also likely to regulate the intracellular level of dihydroxyacetone by catalyzing the reverse reaction, i.



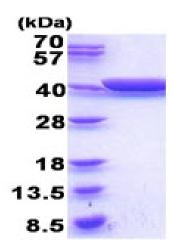
# NKMAXBIO We support you, we believe in your research

## Recombinant e.coli gldA protein

Catalog Number: ATGP3130

e. the conversion of dihydroxyacetone into glycerol. gldA possesses a broad substrate specificity, since it is also able to oxidize 1, 2-propanediol and to reduce glycolaldehyde, methylglyoxal and hydroxyacetone into ethylene glycol, lactaldehyde and 1, 2-propanediol, respectively. Recombinant E. coli gldA protein, fused to His-tag at N-terminus, was expressed in E. coli and purified by using conventional chromatography techniques.

## **Amino acid Sequence**


MGSSHHHHHH SSGLVPRGSH MGSMDRIIQS PGKYIQGADV INRLGEYLKP LAERWLVVGD KFVLGFAQST VEKSFKDAGL VVEIAPFGGE CSQNEIDRLR GIAETAQCGA ILGIGGGKTL DTAKALAHFM GVPVAIAPTI ASTDAPCSAL SVIYTDEGEF DRYLLLPNNP NMVIVDTKIV AGAPARLLAA GIGDALATWF EARACSRSGA TTMAGGKCTQ AALALAELCY NTLLEEGEKA MLAAEQHVVT PALERVIEAN TYLSGVGFES GGLAAAHAVH NGLTAIPDAH HYYHGEKVAF GTLTQLVLEN APVEEIETVA ALSHAVGLPI TLAQLDIKED VPAKMRIVAE AACAEGETIH NMPGGATPDQ VYAALLVADQ YGQRFLQEWE

#### **General References**

Subedi K.P., et al. (2008) FEMS Microbiol. Lett. 279:180-187 Gonzalez R., et al. (2008) Metab. Eng. 10:234-245

#### **DATA**

#### **SDS-PAGE**



15% SDS-PAGE (3ug)

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain.

