NKMAXBIO We support you, we believe in your research

Recombinant human DLL4 protein

Catalog Number: ATGP3954

PRODUCT INFORMATION

Expression system

HEK293

Domain

27-524aa

UniProt No.

09NR61

NCBI Accession No.

NP 061947

Alternative Names

Delta-like protein 4, Drosophila Delta homolog 4, Delta4, delta like canonical Notch ligand 4,AOS6, hdelta2

PRODUCT SPECIFICATION

Molecular Weight

55.1kDa (504aa)

Concentration

0.25mg/ml (determined by Absorbance at 280nm)

Formulation

Liquid in. Phosphate-Buffered Saline (pH 7.4) containing 10% glycerol

Purity

> 95% by SDS-PAGE

Endotoxin level

< 1 EU per 1ug of protein (determined by LAL method)

Tag

His-Tag

Application

SDS-PAGE

Storage Condition

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

BACKGROUND

Description

DLL4, also known as Delta-Like protein 4, is a membrane protein belonging to the Delta/Serrate/Lag2 (DSL) family of Notch ligands. It is predicted to encode a membrane-bound ligand, characterized by an extracellular region containing several EGF-like domains and a DSL domain required for receptor binding. DLL4 is expressed highly and selectively within the arterial endothelium and has been shown to function as a ligand for Notch 1 and

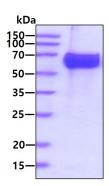
NKMAXBIO We support you, we believe in your research

Recombinant human DLL4 protein

Catalog Number: ATGP3954

Notch 4. The Notch signaling pathway is fundamental to proper cardiovascular development and is now recognized as an important player in tumor angiogenesis. Two key Notch ligands have been implicated in tumor angiogenesis, Delta-like 4 and Jagged1. Recombinant human DLL4, fused to His-tag at C-terminus, was expressed in HEK293 cell and purified by using conventional chromatography techniques.

Amino acid Sequence


SGVFQLQLQE FINERGVLAS GRPCEPGCRT FFRVCLKHFQ AVVSPGPCTF GTVSTPVLGT NSFAVRDDSS GGGRNPLQLP FNFTWPGTFS LIIEAWHAPG DDLRPEALPP DALISKIAIQ GSLAVGQNWL LDEQTSTLTR LRYSYRVICS DNYYGDNCSR LCKKRNDHFG HYVCQPDGNL SCLPGWTGEY CQQPICLSGC HEQNGYCSKP AECLCRPGWQ GRLCNECIPH NGCRHGTCST PWQCTCDEGW GGLFCDQDLN YCTHHSPCKN GATCSNSGQR SYTCTCRPGY TGVDCELELS ECDSNPCRNG GSCKDQEDGY HCLCPPGYYG LHCEHSTLSC ADSPCFNGGS CRERNQGANY ACECPPNFTG SNCEKKVDRC TSNPCANGGQ CLNRGPSRMC RCRPGFTGTY CELHVSDCAR NPCAHGGTCH DLENGLMCTC PAGFSGRRCE VRTSIDACAS SPCFNRATCY TDLSTDTFVC NCPYGFVGSR CEFPVGLP< HH HHHH>

General References

J R Shutter., et al, (2000) Genes Dev. 14:1313-1318. J Dufraine., et al, (2008) Oncogene. 27:5132-5137.

DATA

SDS-PAGE

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain

